Generation of a beam with orbital angular momentum recorded on the photorefractive crystal

Authors

  • Sandra J. Carreño Universidad Federal de Pernambuco
  • André L. Moura Universidad Federal de Pernambuco
  • Vladimir Jerez Universitaria de Investigación y Desarrollo - UDI

DOI:

https://doi.org/10.33304/revinv.v09n1-2017014

Keywords:

Orbital angular momentum, Photorefractive crystal, BTO

Abstract

This work presents a novel technique for the generation of light beams with orbital angular momentum (MAO) using a photorefractive BTO crystal in an experimental arrangement where a beam with MAO and a reference beam generate a holographic interferometric beam register. One of the possible applications if you can fix the hologram, could be the study of phenomena of optics and non-linear optics using beams with high powers.

Downloads

Download data is not yet available.

Author Biographies

Sandra J. Carreño, Universidad Federal de Pernambuco

Magíster en Física, Universidad Federal de Pernambuco (UFPE). Docente- investigador del grupo Óptica No Lineal Universidad UFPE

André L. Moura, Universidad Federal de Pernambuco

Físico de la Universidad Federal de Alagoas (UFAL). Doctor en Física UFAL. Docente- investigador del grupo Óptica de la UFAL

Vladimir Jerez, Universitaria de Investigación y Desarrollo - UDI

Físico de la Universidad Industrial de Santander (Bucaramanga). Doctor Física Universidad Industrial de Santander. Docente- investigador del grupo Fields, Universitaria de Investigación y Desarrollo

References

Allen, L., Beijersbergen, M., Spreeuw, R. & Woerdman, J. (1992). Orbital angular momentum of light and transformation of Laguerre-Gauus laser modes. Physical Review, 45. doi.org/10.1103/PhysRevA.45.8185

Anderson, S., Gomes, L., Raposo, E., Moura, A., Serge, I., Fewo, De Araújo, C. (2015). Random lasers, L'evy statistics and spin glasses: Synergy between photonics and complex systems.

Bazhenov, V. Y., Vasnetsov, M. V., & Soskin, M. S. (1990). Laser beams with screw dislocations in their wavefronts. American Institute of Physics, 52(8), 429-431. doi:195.178.214.34/ps/1159/.

Frejlich, J. (2007). Photorefractive materials: Fundamental concepts, holographic recording and materials characterization (cap. 2). New Jersey: John Wiley &Sons.

García, H. $ Gutiérrez-Vega L.C. (2009). Diffraction of wave planes by fnite-radius spiral phase wave plates of integer and fractional topological charge. Journal Optical Society of America, 26(4), 794-803.

Günter, P. (1988). Photorefractive Effects and Materials, Topics in Applied Physics: Photorefractive Materials and Their Applications I and II (61–62). Günter, P. & Huignard, J. (Eds). Berlín, Heidelberg: Springer-Verlag.

Hickmann, J., Fonseca, E., Soares, W. & Chávez, S. (2010). Unveiling a truncated optical lattice associated with a triangular aperture using. Physical Review Letters, 105.

Jerez, V., de Oliveira, I. & Frejlich, J. (2011). Fixed photorefractive holograms with maximum index-of-refraction modulation in LiNbO3:Fe. Journal of Applied Physics, 106 (6). doi.org/10.1063/1.3223319

Jerez, V., de Oliveira, I. & Frejlich. J. (2009). Optical recording mechanisms in undoped titanosillenite crystals. Journal of applied physics, 109 (2). doi.org/10.1063/1.3533421

Maia, L., Filho, F., Jerez, V., Moura, A. & de Araújo, C. (2015). Structural and luminescence properties of Nd 3+/Yb 3+ codoped Al4B2O9 nanocrystalline powders. Journal of Materials Chemistry C, 3 (44). doi:10.1039/C5TC01696G

Published

2017-06-06

How to Cite

Carreño, S. J., Moura, A. L., & Jerez, V. (2017). Generation of a beam with orbital angular momentum recorded on the photorefractive crystal. I+D Revista De Investigaciones, 9(1), 146–149. https://doi.org/10.33304/revinv.v09n1-2017014

Issue

Section

Artículos-V9