Analysis of the soil liquefaction phenomenon and its health implications
DOI:
https://doi.org/10.33304/revinv.v15n1-2020013Keywords:
sand, water table, liquefaction, soilAbstract
Liquefaction occurs in locations where water rises to the surface of the ground, as in swamps, streams, and along beaches. The study of this phenomenon is important in the field of sanitary engineering, since this must be considered in the design and construction of hydro-sanitary works in which its occurrence must be known at conceptual and experimental levels. The above in order to analyze the behavior of the soil to be intervened, so that the occurrence of the liquefaction phenomenon is minimal and the structures do not suffer any possible damage. In this research article, the results obtained from a theoretical-experimental work in soil liquefaction phenomenon are presented. The process was developed in three phases. In the experimental stage, the samples of undrained soil were characterized, which can be subjected to the process of liquefaction, by applying the model proposed. Subsequently, five trials were conducted with different volumes of material that underwent a specific water table. Finally, the data obtained through the statistical correlation model were analyzed, which allowed to determine the occurrence of the event, and to analyze the phenomenon and its possible implications in hydro-sanitary works.Downloads
References
Brenes Quesada, F. (2008). Evaluación del potencial de licuefaccion de suelos. (Tesis de pregrado), Instituto Tecnologico de Costa Rica.
C.C.C.R. (2009). Codigo de cimentaciones de Costa Rica. Cartago, Costa Rica : Tecnologica de Costa Rica.
Delgado, J. (2011). Efectos geotecnicos de los terremotos. Universidad de Alicante, 19.3, 276-288
Garrido, J., & Lopez Casado, C. (2011). On Far Fiel occurrence of seismically induced landslides . Engineering Geology, 123, 204-213.
Fredlund, D. G. (2000). The 1999 RM Hardy Lecture: The implementation of unsaturated soil mechanics into geotechnical engineering. Canadian Geotechnical Journal, 37(5), 963-986.
Gonzalez, D., & Ferrer, M. (2002). Ingenieria Geologica . Madrid: Prentice Hall Pearson Educación.
González, M. (2012). El terreno. Barcelona: Universitat Poliécnica de Catalunya, SL.
Karmal, I. (2014). Liquefaction analysis of alluvial soil deposits in Bedsa south west of Cairo. Ain Shams Engineering Journal, 741-655.
Kramer, S. & Stewart J. (2004). Geotechnical Aspects of seismic Hazards. (Chapter 4), 1-4.
Mesa, V. (2011). Suelos parcialmente saturados, de la investigacion a la catedra universitaria. Revista boletin ciencias de la tierra, 1-14
Nicholl, & Karnowsky. (2006). Laboratory apparatus for the demonstration of quicksand. Jounal of Geoscience Education, 54:5,578-583
Obermeier , S. (2005). Fiel Occurrences of liquefaction-induced features: a primer for engineering geologic analysis of paleoseismic shaking. . Engineering Geology, 2009-234.
Santibañez. (2006). Determinacion del potencial de licuefaccion de suelos no cohesivos saturados bajo cargas sismicas usando el ensayo de penetracion estandar.(tesis de pregrado), Universidad Austral de Chile, Valdivia.
Sadrekarimi. (2014). Static liquefaction analysis considering soil dilatancy. Soil and foundations, 54(5): 955-966.
SCG. (2006). Sociedad Colombiana de Geotecnia, NSR-10 Capitulo H10- Rehabilitacion sismica de edificios: Amenazas de origen sismico geotecnico y reforzamiento de cimentaciones.
Vergel, G. (2010). Metodologia. Un manual para la elaboracion de diseños y proyectos de investigacion. Compilacion y ampliacion tematica. Barranquilla: Publicaciones Corporacion UNICOSTA.